top of page

Resultados da Busca

512 resultados encontrados com uma busca vazia

  • A "razão de ser" da Oceanografia por Satélites

    Por Gustavo Prouvot Ortiz Originalmente publicado em: https://www.linkedin.com/pulse/razão-de-ser-da-oceanografia-por-satélites-gustavo-prouvot-ortiz Assim como o pioneiro Iuri Gagarin ficou extasiado ao observar nosso lindo planeta e exclamar que "A Terra é azul", atualmente os satélites científicos permitem que nós tenhamos momentos de êxtase diariamente. Isto é possível pois sensores em órbita na Terra são capazes de observar e medir diferentes variáveis e processos ambientais. O Sensoriamento Remoto por satélites permite a observação de grandes regiões praticamente no mesmo instante, sendo possível avaliar a extensão espacial de fenômenos normalmente pesquisados localmente, com auxílio de equipamentos de campo. A Oceanografia beneficiou-se com o advento dos satélites a partir do final da década de 70, permitindo uma visão e entendimento sem precedentes dos processos oceanográficos existentes. Diversas variáveis primárias medidas pelos satélites, como radiância, temperatura de brilho, rugosidade superficial e topografia dinâmica são utilizadas na Oceanografia por Satélites para a estimativa de variáveis importantes como temperatura superficial, concentração de clorofila-a, velocidade geostrófica, altura de ondas, campo de ventos superficiais, entre outros. Desta forma, o Sensoriamento Remoto tornou-se essencial para a Oceanografia moderna, provendo uma grande extensão espacial das observações às variáveis oceanográficas tradicionalmente estudadas por navios, bóias e sensores isolados. Atualmente, além da utilização dos sensores de campo para calibração e validação dos dados de satélites, há a tendência de sinergia dos dados de diferentes fontes, aproveitando o que cada tipo de sensor pode prover de melhor. Os crescentes avanços na capacidade computacional e gráfica dos grandes centros de Observação da Terra permitem, cada vez mais, que nós tenhamos momentos de êxtase como Iuri Gagarin, porém dizendo que "A Terra é Azul - e tem um monte de coisa acontecendo nela!". Este texto foi motivado por um post feito pelo Ocean Biology Distributed Active Archive Center (OB.DAAC) da NASA, que indica de forma simples "a razão de ser da Oceanografia por Satélite" “The patchiness exhibited by phytoplankton communities around New Zealand in the image provides the raison d'être for satellite remote sensing of ocean color; a whole fleet of ships, drifters, gliders, and buoys could not capture this variability before it morphed into a new pattern.” Saudações oceanográficas! Gustavo já publicou outro post no Bate-papo com Netuno, leia aqui Sobre Gustavo Prouvot Ortiz: Sou oceanógrafo com experiência em sensoriamento remoto, geologia marinha, Lei do Mar e geopolítica. Vejo o oceanógrafo (bem formado) como um "naturalista moderno", capaz de observar e descrever processos com abordagem multidisciplinar e desempenhar papel relevante em diversos setores da sociedade. Tenho paixão pela divulgação científica e, como pai, creio que somos responsáveis por desenvolver o senso crítico nos pequenos e fazê-los perceber seu papel em nosso complexo planeta. #oceanografia #oceanografiaoporsatélites #ciênciasdomar #gustavoprouvotortiz #convidados

  • O que é Maricultura?

    Por Gabrielle Souza Você já ouviu o termo “Maricultura”? Sabe qual a importância dessa prática? No Descomplicando Netuno de hoje vamos falar sobre isso! Você já deve ter escutado falar sobre a criação de algas e animais aquáticos em viveiros, não é mesmo?! Esta prática é conhecida como aquicultura, que nada mais é do que criar condições parcial ou totalmente controladas para cultivar esses organismos. Para ser considerada uma atividade de aquicultura, segundo a Organização das Nações Unidas para Agricultura e Alimentação (FAO), são necessários três requisitos: Que o organismo possua habitat predominantemente aquático em algum estágio de seu desenvolvimento; A existência de manejo e produção; A existência de um proprietário da criação (não é um bem coletivo). A aquicultura é um termo muito amplo e engloba todos os organismos que vivem em ambiente aquático. Por isso, para o cultivo e criação dos organismos marinhos ou estuarinos foi criado o termo maricultura. A maricultura pode ser subdividida de acordo com o tipo de organismo cultivado, como por exemplo: peixes (piscicultura), crustáceos (carcinicultura - que se restringe somente a camarões no Brasil), moluscos (malacocultura) e algas (algicultura). Você deve estar se perguntando, “como estes organismos são criados e obtidos?” Geralmente os organismos são obtidos no ambiente natural em seu estágio jovem, porém também podem ser produzidos em laboratório, incluindo a reprodução e criação de larvas, conhecida como larvicultura. Depois da obtenção da forma jovem, os organismos são cultivados em viveiros escavados, tanques ou no mar, comumente em ambientes costeiros abrigados como baías, golfos, entre outros. Os viveiros mais utilizadas para criar este animais no mar são: gaiolas, longlines, balsas e tanques-rede. Figura A: Longlines (ou longa linha). Fonte Figura B: Lanterna com cinco andares, utilizados para criação de moluscos. Fonte Figura C: Gaiola utilizada para criação de peixes. Fonte Para cada tipo de cultivo utiliza-se condições físico-químicas da água adequadas e controladas, como por exemplo temperatura, iluminação, salinidade, concentração de oxigênio dissolvido, amônia e nitrito. Na tabela abaixo observa-se a produção em toneladas da maricultura brasileira entre os anos de 2008 a 2010, onde as práticas mais comuns são carcinicultura e malacocultura. No país a maricultura é praticada em todos os estados costeiros e está, a cada dia mais, se estabelecendo como atividade produtora do pescado, sendo uma fonte de renda para diversas famílias, que garantem o sustento com essa prática. São destaques a região sul, em Santa Catarina, com a produção de mexilhões, ostras e vieiras. Tabela Adaptada de Castello & Krug, 2015 A maricultura é vista com grande importância na produção de alimentos e para outros ramos da indústria. É uma atividade de potencial crescimento, podendo atender o déficit entre demanda e oferta dos produtos pesqueiros. Porém, como qualquer outra intervenção humana na natureza, a maricultura tem seus pontos negativos e positivos. Ao mesmo tempo que é uma atividade que não sobrecarrega os estoques pesqueiros naturais, que gera fonte a comunidades tradicionais, pode causar desmatamento em áreas costeiras, a contaminação das águas, a introdução de espécies exóticas (que não são nativas) entre outros problemas. Assim sendo, faz-se necessário buscar uma maricultura cada vez mais sustentável, que minimize os impactos ambientais, e beneficie a sociedade e a economia local. Falaremos mais sobre isso em outro post, aguardem! Para saber mais: http://www.fao.org/3/a-i5555e.pdf Um documentário sobre salmões e mulheres cientistas Referências: CASTELLO, Jorge Pablo; KRUG, Luíz Carlos. Introdução às Ciências do Mar. Pelotas: Textos, 2015. 602 p. #algas #crustáceos #descomplicando #gabriellesouza #maricultura #moluscos #peixes #viveiros

  • Para onde foi a água do mar?

    Por Gustavo Prouvot Ortiz Originalmente publicado em: https://www.linkedin.com/pulse/vigia-remoto-2-para-onde-foi-água-do-mar-gustavo-prouvot-ortiz Recentemente foi muito comentado na imprensa e redes sociais o acentuado recuo do mar observado nos estados do Sul e Sudeste, nos dias 12 e 13 de agosto. Muitas dúvidas surgiram a respeito: Qual será o motivo desse fenômeno? Será que é um tsunami? Já aconteceu outras vezes? Para entender: o nível do mar é influenciado basicamente por: Nível Eustático + Maré Astronômica + Efeitos Meteorológicos Nível Eustático: nível regional, associado a longos ciclos climáticos maiores que 1.000 anos Maré Astronômica: forçada pela dinâmica gravitacional da Terra e outros corpos celestes (Sol, Lua...) - ciclos entre 12h e 24h (saiba mais aqui) Efeitos Meteorológicos: também chamados de "maré meteorológica", são efeitos forçados por incidência de vento local ou instabilidades na atmosfera - duram até poucos dias Explicação : O recente caso chamou a atenção pelo baixíssimo nível do mar, que resultou no recuo da linha d'água de mais de 50m em alguns locais mais planos. Dentre as três opções anteriores, podemos, é claro, descartar a (1) pela escala temporal. A opção (2) também pode ser descartada como principal forçante, pois nos dias 12 e 13 a Lua estava indo para a fase minguante, que está relacionada às marés de quadratura (baixa amplitude). Sobra, então, a opção (3) Efeitos Meteorológicos. Mas como eles poderiam gerar tal fenômeno? Vejamos: O escaterômetro é um sensor a bordo de satélites capaz de medir a velocidade e direção do vento na superfície do oceano. Na manhã do dia 12 o sensor a bordo do MetOp-A registrou fortes ventos vindos de NE ao largo dos estados do Sul e Sudeste. Este padrão de ventos já vinha sendo observado há alguns dias na região. Esta configuração de vento paralelo à costa gera o processo oceanográfico chamado de transporte de Ekman: Através de um complexo equilíbrio de forças, há um deslocamento da superfície do mar à esquerda da direção do vento Foi este então o fenômeno observado. Matamos a charada! Respostas ao restante das perguntas iniciais: Será que é um tsunami? Não é um tsunami! Vimos que foi um efeito meteorológico o causador deste baixo nível do mar anômalo. Já aconteceu outras vezes? Felizmente há uma série histórica de dados globais de escaterômetros desde 1999, o que permite realizar análise dos períodos em que o campo de vento apresentou características semelhantes nesta região. Alguém habilita-se a colaborar em um estudo? Outra forma de encontrar períodos anômalos do nível do mar é analisando os dados de marégrafo. Os registros em Ubatuba-SP indicam sim que houve ao menos outros 04 período anômalos desde 2014: É interessante notar que no dia 05-out-2014 o nível esteve até mais baixo que o do recente fenômeno. Estes registros indicam que é um fenômeno anômalo, mas ocorreu entre os meses de junho e outubro. Será que há alguma regularidade? Uma análise temporal mais longa pode elucidar isto. Há algo em comum nos processos atmosféricos destes dois períodos? Sim! O campo de vento medido pelo escaterômetro registrou fortes ventos de NE e havia a mesma configuração sinóptica, como podemos ver nas cartas geradas pelo CPTEC: Em ambos os períodos havia um dipolo (Alta e Baixa pressão) com características estacionárias atuando na região. Será que esta configuração somente ocorreu entre os meses de junho e outubro, no mesmo período da anomalia de maré baixa? Para saber mais: https://www.youtube.com/watch?v=lnaEmcLE0nA Sobre Gustavo Prouvot Ortiz: Sou oceanógrafo com experiência em sensoriamento remoto, geologia marinha, Lei do Mar e geopolítica. Vejo o oceanógrafo (bem formado) como um "naturalista moderno", capaz de observar e descrever processos com abordagem multidisciplinar e desempenhar papel relevante em diversos setores da sociedade. Tenho paixão pela divulgação científica e, como pai, creio que somos responsáveis por desenvolver o senso crítico nos pequenos e fazê-los perceber seu papel em nosso complexo planeta. #gustavoprovoutortiz #convidados #ciênciasdomar #efeitosmeteorológicos #maré #níveldomar #oceanografia #transportedeekman #tsunami

  • Seagrass: canaries of the sea

    By Juliana Imenis, Juliana Nascimento, Larissa de Araujo, Natalia Pirani, Otto Muller and Paula Keshia Edited by Katyanne M. Shoemaker In the early 20th century, coal miners frequently carried caged canaries to work. The little birds saved many miners' lives because their sudden death or sickness indicated a possible gas leak. An alarm would sound and the mine would be evacuated. We could say the canaries were bioindicators, or organisms that indicate a possible environmental problem through their behavior or health status. Today, we no longer have a need to sacrifice the canaries because we have electronic indicators that can tell us about possible mine disasters. Like the canary, some organisms are extremely sensitive to pollution and habitat alterations; their populations tend to diminish or even vanish quickly after environmental modifications take place. Other organisms may be very tolerant to poor environmental conditions and can sometimes have a population boom in areas where the conditions would be inadequate to the majority of other species. One of these bioindicators is the marine phanerogam, also known as marine seagrass. Image by Joana Ho This particular group of plants grow on the sea floor, have elongated straight leaves, and subterraneous stalks, called rhizomes. Seagrass may live completely immersed in water, and they are found in coastal waters of nearly every continent. Despite being known as “seagrass”, this group is closer to the lily and ginger families than grass (Figure 1). They are an important part of the diet of manatees and sea turtles, and they are used as habitat by many other sea animals (Figure 2), including commercially important fish and crustaceans. Although difficult to quantify, seagrasses have a large aggregated commercial value, estimated to be up to 2 million dollars a year. They also play an important role in sequestering carbon into their biomass and sediment, thus decreasing the carbon dioxide (CO2) concentrations in the atmosphere. This helps promote nutrient recycling, coastal protection, and improve overall water quality. In Brazil, despite controversial information and the necessity of more genetic studies to differentiate the species correctly, there are so far, five known species of seagrass (Figure 3): Halodule wrightii Ascherson; Halodule emarginata Hartog; Halophila baillonii Ascherson; Halophila decipiens Ostenfeld and Rupia maritima Linnaeus. Seagrass are considered to be great environmental quality indicators, because they are very sensitive to light and nutrient availability variations. Global climate change has many impacts on the marine environment, including the rise of global average sea surface temperatures, variations in pH (ocean acidification), and alterations of ocean currents. These are some of the rapid changes in marine environment that have been seen by researchers, and their consequences are still little known. There are many factors involved in the interactions between environmental variables and biological communities, making overall consequences hard to forecast (Figure 4). Seagrass need specific environmental conditions, like low turbidity and high incidence of light. They are suffering local reduction and in some places completely vanishing, indicating that the anthropegenic environmental changes are happening fast, not giving the organisms enough time to respond to the new conditions. The capacity of ecosystems to respond to impact and return/maintain their original conditions is called resilience. Although the degree and type of impact on seagrass may vary with geography, some hypothesis were generated by the Benthic Habitat Monitoring Network (ReBentos) about how climate change may affect them: (1) the increased concentration of nutrients, given the increased quantity of rain, may cause changes in the community composition, favoring the occurrence of opportunistic species, which can be damaging for the local species; (2) changes in sea surface temperature can affect tropical species, favoring the extension and displacement of their occurrence limits towards higher latitudes; (3) extreme events, like floods and storms, may cause reduction or disappearance of seagrass in a quick and abrupt way; (4) the increased quantity of continental matter in estuaries may affect the abundance and composition of the communities, due to the increased turbidity and salinity changes. On the other hand, the reduction of rain and/or increased penetration of seawater into continental waters could increase or alter the estuarine seagrass' area of occupation; and finally (5) days or week-long heat waves, derived from external events, may reduce or extinguish fields in shallow areas. As an example of evidences that support these hypothesis, we can mention a study published by the Journal of Experimental Marine Biology and Ecology by Ricardo Coutinho and Ulrich Seeliger, that, in 1984, observed that the species R. maritima, although tolerant with eutrophicated conditions, was shadowed by epiphytes and macroalgae that grew due to an excess of nutrients in the water. Those organisms tangle in this seagrass species, causing reduction on its photosynthetic rates and increasing their drag, facilitating their detachment when subjected to waves and currents. Another example is the study published in the Marine Ecology by Frederick T. Short and collaborators, that in 2006 observed the reduction of H. hrightii through the movement of sediment, caused by stronger and more frequent storms, which buried the fields of seagrass. Therefore, as mentioned by other authors, we can consider seagrass as the canaries of the sea, important in diagnosing the environment's health in response to global climate change. Certainly, the loss of these ecosystems will bring not only economic loss, but also the loss of biodiversity, a factor that is much more valuable and difficult to measure. To know more: COPERTINO, M.S.; CREED, J.C.; MAGALHÃES, K.M.; BARROS, K.V.S.; LANARI, M.O.; ARÉVALO, P.R.; HORTA, P.A. (2015). Monitoramento dos fundos vegetados submersos (pradarias submersas). IN: TURRA, A.; DENADAI, M. R.. Protocolos de campo para o monitoramento de habitats bentônicos costeiros - ReBentos, cap. 2, p. 17-47. São Paulo: Instituto Oceanográfico da Universidade de São Paulo. Disponível em: . Acesso em: 04 nov. 2015. MARQUES, L. V.; CREED, J. C.(2008). Biologia e ecologia das fanerógamas marinhas do Brasil. Oecologia Brasiliensis, v. 12, n. 2, p. 315 - 331. MCKENZIE, L.(2008). Seagrass Educators Handbook. Cairns: Seagrass Watch-HQ. Disponível em: . Acesso em: 30 out. 2015. MCKENZIE, L (2009). Coastal Canaries. Seagrass Watch, v.39, p. 2-4. Disponível em: . Acesso em: 03 nov. 2015. About the authors: Juliana Imenis Barradas, CCNH-UFABC, PhD student in the postgraduate program in Evolution and Diversity, biologist, Master in Zoology (UFPB). juliana.imenis@ufabc.edu.br, http://lattes.cnpq.br/4843331968538355 Larissa de Araujo Kawabe, CCNH-UFABC, master graduate student of in the postgraduate program in Evolution and Diversity, biologist. http://lattes.cnpq.br/7133427266626274 Juliana Nascimento Silva, CECS-UFABC, undergrad in Environmental and Urban Engineering (UFABC). http://lattes.cnpq.br/5975285955317582 Paula Keshia Rosa Silva, CCNH-UFABC, master graduate student of in the postgraduate program in Evolution and Diversity. http://lattes.cnpq.br/9557245804556650 Natalia Pirani Ghilardi-Lopes, CCNH-UFABC, Adjunct Professor, Biologist, Assistant Professor, Biologist, holds a doctorate in Botanic (USP). http://lattes.cnpq.br/8457066927181345 Otto Müller Patrão de Oliveira, CCNH-UFABC, Adjunct Professor, Biologist, holds a doctorate in Zoology (USP), http://lattes.cnpq.br/7304237172635774 #julianaimenis #juliananascimento #larissadearaujo #nataliapirani #ottomuller #paulakeshia #invited #joanaho #marinescience #seagrass #chat #chatkatyannemshoemaker

  • O mundo empresarial e acadêmico – como os dois estão relacionados na Oceanografia?

    Por Davi Mignac Ilustração: Joana Ho Desde que comecei a graduação em Oceanografia, sempre tive um desejo imenso de desenvolver tecnologias e produtos voltados para atender demandas da sociedade. Entender a motivação do meu trabalho e a contribuição que ele poderia fornecer para setores específicos da sociedade foi a força motriz para me especializar em uma área chamada Oceanografia Operacional, focando particularmente na produção de previsões oceânicas na costa do Brasil e na sua importância para os setores de navegação e exploração offshore. Quando era criança, brincava que eu era o homem do tempo, e apenas olhando para o céu, dizia se iria chover nos próximos dias. Na universidade, relembrando esses tempos, dava risada sobre tamanha ingenuidade, mas começava a me perguntar: como produzir previsões de tempo mais precisas? Por que a previsão oceânica não é tão difundida como a previsão de tempo, e qual a importância dela para setores de navegação e para a indústria? Naquele momento, a universidade era minha “casa” e comecei a criar o espírito empreendedor ali mesmo, ao propor desenvolver um código de computador que melhorava a qualidade das previsões oceânicas geradas para a Petrobras, a qual financia o projeto da Rede de Modelagem e Observação Oceanográfica (REMO). A REMO é um grupo de pesquisa existente na Marinha do Brasil e em algumas universidades, incluindo a Universidade Federal da Bahia (UFBA), na qual me graduei. No meu mestrado na UFBA, continuei a aperfeiçoar esse código, fiz diversas viagens à trabalho para Marinha do Brasil e para fora do país, incluindo EUA, Europa e até mesmo para China. A REMO abriu minha cabeça para algo chamado inovação, que sim, está presente na universidade e é obrigação no mundo empreendedor. Comecei a circular em um ambiente empresarial, quando durante o mestrado, me tornei consultor da empresa Advanced Subsea, pois eles queriam desenvolver um sistema de visualização de previsões do estado da mar nas bacias petrolíferas brasileiras. Opa, naquele momento percebia que tinha empresas interessadas naquele universo da Oceanografia Operacional. Isso significa que então existia mercado para aquilo, e que pessoas estavam dispostas a pagar por um produto como esse. Então pensei “que maravilha, eu entendo disso, agora só falta abrir uma empresa”. Terminei meu mestrado, comecei a trabalhar na REMO por um tempo, e surfando uma tarde com amigos do curso, inclusive com dois que já tinham uma empresa de oceanografia,a Preamar Gestão Costeira, começamos a maturar um sistema de risco das operações portuárias com base em previsões hiperlocais das condições de mar e tempo. Não deu outra, abrimos uma empresa, agora a Preamar Soluções em Modelagem. Ficamos todos empolgados com a ideia, e então entramos nesse universo da start-up,  um verdadeiro gatilho nas nossas vidas empreendedoras. A start-up respira inovação no seu dia a dia, e para ter sucesso, é preciso acreditar, ser criativo, ter ideias e saber moldar seu produto ao mercado. É preciso validar sua ideia com os clientes, é preciso saber se relacionar com pessoas, é preciso saber negociar, é preciso saber precificar, é preciso se acostumar com a resposta “não”, é preciso saber montar uma equipe de profissionais e zelar por ela, é preciso ter estratégia e frieza, é preciso criar uma cultura sólida e transmitir isso ao seu redor, é preciso ser fanático, um verdadeiro “workaholic” - no meu caso mesclado com doses de surf e diversão, claro. Começar a respirar esse mundo foi e ainda é uma experiência sensacional, quanto aprendizado! “Nunca teria enxergado esse mundo se tivesse me fechado completamente na academia”, penso eu agora. Então penso novamente, “deixe de ser ingrato Davi, pois não foi a academia que ajudou a abrir sua cabeça para a inovação? Que fomentou sua busca por coisas novas? Por conhecimento?” Esses dois mundos tem suas peculiaridades, mas são unidos por algo que move o universo das tecnologias: a busca pelo novo, o ritmo de constante aprendizado e o desejo de estar na fronteira do conhecimento. Para inovar, é preciso conhecer primeiro. E com essa mentalidade, aqui estou eu fazendo meu doutorado na Universidade de Reading na Inglaterra, longe fisicamente da minha terrinha, mas virtualmente conectado com a minha empresa, oras. Reuniões quase todos os dias, planejamento, desenvolvimento, programação, código. Numa start-up, o sócio faz tudo, o famoso “severino quebra-galho”, mas cada um tem suas prioridades, pois para a engrenagem girar, alguém tem que ficar responsável pela área de desenvolvimento, outro pela área administrativa e financeira, outro pela área de prospecção e relacionamento com clientes, e por aí vai. Vim para o doutorado porque acho que posso aprender mais e com isso contribuir para a empresa da qual faço parte. Posso conhecer o mercado aqui fora também, posso estabelecer contato e parcerias com universidades/instituições de fora. Porque eu acredito que universidades e empresas podem caminhar juntas. E no momento que eu terminar o meu doutorado (mais 1 ano e meio pela frente), devo me afastar da academia no meu dia a dia, mas minha filosofia irá continuar, de que deve existir uma parceria saudável entre universidade e empresa, com ambos se beneficiando dessa simbiose, e girando em torno de um objetivo comum: inovar e revolucionar as maneiras de enxergar processos e conceitos atualmente existentes. E rapaz, como você segura essa onda de doutorado e empresa? Porque como eu falei acima, eu sou fanático pelo que eu faço, e o sacrifício de hoje é a recompensa que virá no amanhã. Com calma, focado no dia a dia, mas pensando longe. E foi através da minha vivência na academia e na empresa que construí essa visão de trabalho, e do que quero para o meu futuro! Sobre Davi Mignac: Oceanógrafo, doutorando em Meteorologia pela Universidade de Reading e COO da Preamar Soluções em Modelagem. Fanático pela inovação e pelo mundo das tecnologias. Acredita que a Oceanografia e Meteorologia são áreas de empreendedorismo bem promissoras, e aposta todas suas fichas por aí. A inspiração vem do surf, que como seu trabalho, tem ligação com o oceano. Sempre disposto a aprender, vive seu sonho de um dia se tornar um empreendedor bem sucedido, mas sem nunca esquecer suas raízes acadêmicas. #oceanografia #oceanografiaoperacional #preamar #remo #startup #vidadecientista #DaviMignac #convidados #joanaho

  • Um documentário sobre salmões e mulheres cientistas

    Por Jana M. del Favero Em um dos meus primeiros posts aqui no blog, escrevi sobre o documentário “Mission Blue”, que conta a história da incrível bióloga marinha Sylvia Early, e suas ações pró oceano (releia aqui). Recentemente assisti outro documentário que me tirou o fôlego e resolvi compartilhar com vocês, pois ele abrange todas as sessões desse blog: “ciências do mar”, “vida de cientista” e “mulheres nas ciências”. O documentário “Salmon Confidential” (Salmão Confidencial) relata a luta da bióloga Alexandra Morton para salvar os salmões selvagens da Colúmbia Britânica, Canadá. A bióloga mudou para a região para estudar as orcas, mas após relatos do aumento da mortalidade de salmões selvagens, decidiu investigar o que estaria causando essas mortes. Analisando os salmões selvagens encontrados mortos, ela encontra uma doença originária da Noruega e que já devastou fazendas de salmão em outros países, como o Chile. Como a região onde os salmões selvagens estavam morrendo possui diversas fazendas de criação do peixe, a pesquisadora tenta dialogar com os fazendeiros e pedir salmões para estudar... A partir daí começa uma batalha: os fazendeiros não liberam espécimes para estudo e lançam relatórios alegando que eles mesmos analisaram e que os salmões de cultivo da região estavam saudáveis. Mas a pesquisadora não desiste, analisa os salmões cultivados na região encontrados em supermercados e passa a observar, mesmo de longe, as fazendas dos peixes. O caso vai parar na justiça e a batalha continua, envolvendo os pesquisadores e os pescadores de salmão selvagens (prejudicados com a alta mortalidade) contra os fazendeiros e o governo (que fica do lado de quem lhe dá maior retorno financeiro!). E é exatamente por isso que esse documentário é de tirar o fôlego, ele aborda diversas questões polêmicas: cultivo versus pesca; o preconceito que a bióloga Alexandra Morton sofre por ser mulher em um ambiente dominado por homens, os entraves burocráticos, a dificuldade de fazer uma pesquisa sem apoio e o fato do governo escutar e apoiar o lado que lhe dá maior retorno financeiro sem analisar os fatos! Fazenda de salmão na Colúmbia Britânica, Canadá. Fonte A bióloga Alexandra Morton. Fonte Portanto, estoure sua pipoca, assista esse documentário que está disponível online e deixe sua opinião nos comentários. Adoraria escutar vocês! Para assistir o documentário (infelizmente só consegui em inglês e sem legenda): http://www.salmonconfidential.ca Para acompanhar as notícias via Facebook: https://www.facebook.com/SalmonConfidential/ Para saber mais sobre Alexandra Morton e sua luta: http://www.alexandramorton.ca #documentário #janamdelfavero #mulheresnaciência #salmonconfidential

  • Termoclina

    Por Gabrielle Souza Você já ouviu falar em termoclina? O Descomplicando Netuno de hoje vai explicar pra você! Os corpos d’água são separados por camadas que são determinadas por suas características físico-químicas, como temperatura e salinidade. A camada mais superficial do oceano tem contato com ondas superficiais e ventos, o que facilita a mistura das águas e, consequentemente, a distribuição de calor. Abaixo desta camada superficial (ou de mistura) encontra-se uma camada de transição entre as águas superficiais, mais quentes, e as  águas profundas, mais frias.  Essa camada de transição recebe o nome de termoclina, e é facilmente reconhecida por ser a camada em que ocorre uma queda brusca de temperatura (veja a ilustração abaixo). A  profundidade e a intensidade da termoclina não é exatamente igual para todas as latitudes e áreas. Ela é um fenômeno semi-permanente em  baixas e médias latitudes (equador e trópicos), zonas com maior incidência de energia solar. As águas polares, por outro lado, possuem pouca incidência solar, não formando termoclina, visto que as águas superficiais destas regiões são tão frias quanto as águas mais profundas. A termoclina pode também variar sazonalmente:  em zonas temperadas uma termoclina sazonal  é formada na camada superficial durante o verão, pois com o aumento da temperatura e com a diminuição do vento há pouca mistura para distribuição do calor, instalando assim uma estratificação térmica; ela então  persiste até o outono, quando a temperatura diminui e os ventos aumentam, provocando a mistura das águas e desfazendo a termoclina sazonal (veja a ilustração acima). A termoclina geralmente coincide com a picnoclina, pois a salinidade e temperatura influenciam na densidade da água. Águas mais quentes e menos salinas são menos densas, e águas mais frias e mais salinas são mais densas. A região de rápida mudança na densidade é conhecida como picnoclina, e exerce papel de barreira da circulação vertical da água, afetando a distribuição dos nutrientes nas camadas do oceano, tornando-os, por exemplo, indisponíveis para o fitoplâncton na zona eufótica (Veja aqui o post sobre as divisões no oceano e relembre o que é zona eufótica). Referências: What is a thermocline?: A thermocline is the transition layer between warmer mixed water at the ocean's surface and cooler deep water below.. 2015. NOAA- National Oceanic and Atmospheric Administration U.S Department of Commerce. Disponível em: . Acesso em: 04 jun. 2017. GARRISON, Tom. Fundamento da Oceanografia. 4. ed. Norte-americana: Cengace Learning, 2010. Tradução: por Cintia Miaiji, et al. 422 p. LALLI, Carol M.; PARSONS, Timothy R.. Biological Oceanography An Introdution. 2. ed. Vancouver, Canadá: The Open University- Set Book, 1998. 337 p. Elsevier Butterworth-Heinemann. #descomplicando #gabriellesouza #termoclina

  • Microrganismos antárticos: entre o fogo e o gelo

    Por Júnia Schultz Originalmente publicado em: http://curtamicro.com.br/termofilicos.html Os microrganismos são incrivelmente adaptados e conseguem habitar todos os ambientes da Terra. Bactérias termofílicas, por exemplo, gostam do calor e precisam de estar sob temperaturas superiores à 50 ºC para se desenvolver bem. No entanto, essas bactérias sobrevivem na Antártica, um dos ambientes mais severos do planeta, conhecido por ser um ambiente gelado e inóspito ao homem. Você deve estar se perguntando: como pode existir microrganismos que necessitam de altas temperaturas na Antártica? Há fogo e calor em meio à neve? Sim, em locais específicos, que sofrem a influência da atividade vulcânica, e proporcionam condições ideais para o desenvolvimento destes microrganismos. A Ilha Deception é um exemplo. Esta ilha é a cratera de um vulcão bastante ativo, localizado na Antártica, e apresenta emissões fumarólicas (vapor e gases) com temperaturas que variam de 90 a 110ºC, águas termais e solos quentes com temperaturas entre 40 e 100ºC. Há relatos na literatura que indicam que esses ambientes quentes na Antártica são muito diversos, apresentando espécies variadas de microrganismos, como os pertencentes aos gêneros Geobacillus, Bacillus e Thermus. Obviamente, os microrganismos adaptados a esses locais são diferentes daqueles adaptados às regiões frias. As diferentes condições climáticas em uma micro-escala são muito importantes para a seleção e manutenção de uma biodiversidade elevada. O mais interessante de tudo isso é o potencial biotecnológico que bactérias desses ambientes possuem. Por estarem adaptadas a condições extremas, podem diferir metabolicamente dos microrganismos de outras regiões, e portanto são excelente alvos para a procura substâncias importantes para a indústria química, alimentícia e farmacêutica, ou seja, podem fornecer produtos e prestar serviços para você! Com base nesse conhecimento, pesquisadores do Chile foram à Antártica buscar lipases, que são enzimas amplamente utilizadas na indústria de alimentos. A produção industrial normalmente envolve altas temperaturas, que destroem as enzimas encontradas em ambientes comuns. Na antártica os pesquisadores encontraram uma bactéria do gênero Geobacillus produtora de lipases resistente à altas temperaturas, e atualmente estudam a otimização da atividade dessa enzima, pelas mudanças nas condições de reações. O universo microbiano é mesmo fascinante, e mesmo nos ambientes mais extremos podemos encontrar microrganismos capazes de melhorar a vida do homem. Referência: MUÑOZ, P.; CORREA-LLANTÉN, D.; BLAMEY, J. Ionic Liquids Increase the Catalytic Efficiency of a Lipase (Lip1) From an Antarctic Thermophilic Bacterium. Lipids, v. 50, p. 49-55, 2015. Sobre Júnia Schultz: Bióloga e doutoranda do Programa de Pós-graduação em Biotecnologia Vegetal e Bioprocessos pela Universidade Federal do Rio de Janeiro. Desenvolve pesquisa com bactérias termofílicas da Antártica e biorremediação de ambientes extremos. #antártica #ciênciasdomar #convidados #microbiologiaambiental #termofilicos #juniaschults

  • De oceanógrafa a programadora

    Por Letícia Portella Publicação original aqui Ilustração Silvia Gonsales Nesta semana me pediram pra contar um pouco sobre como eu virei programadora (ou pelo menos estou no processo). Eu escrevi esse texto para contar um pouco mais sobre essa história. Vamos começar do começo: sou oceanógrafa formada pela Universidade Federal de Santa Catarina em Dezembro de 2013. Bom, isso por si só, já costuma assustar as pessoas: Oceoque? A Oceanografia é linda e apaixonante. Aprendi muitas coisas interessantes e me apaixonei por muitas matérias que eram assustadoras. Logo no começo tivemos cálculos, físicas etc. Quando comecei a trabalhar na área eu transitei entre a oceanografia geológica e física até que, em 2011, consegui um estágio num instituto de pesquisa da Marinha e fui definitivamente para a Oceanografia Física, que é a área mais perto das exatas. Na oceanografia é muito comum trabalhar com dados matriciais e vetoriais e, para isso é comum utilizar um software chamado MATLAB. Por isso, durante o curso acabei aprendendo um pouco de MATLAB. Que é semelhante a uma linguagem de programação, com lógica de loops, condicionais etc. No entanto, quando eu cheguei na marinha, conheci dois oceanógrafos que trabalhavam com Python. Python? O que é isso? Tivemos várias discussões sobre como o MATLAB era um software pago e na faculdade usávamos a versão pirata, o que não era legal em ambos os sentidos da palavra, né? Nessa onda, eles começaram a me falar sobre como o Python seria o futuro da oceanografia, graças à sua maleabilidade, facilidade e, ainda por cima, era gratuito! Show de bola. Vamos aprender, né? E assim eu tive o meu primeiro contato com uma linguagem de programação mais propriamente dita. Os meus colegas foram muito espertos, sabe por quê? Todos os dias eles me desafiavam a algo novo. “Duvido que você consiga ler esse txt”, “Agora faça essa atividade com a menor quantidade de linhas possível”, e assim por diante. Eu achava aquilo fantástico! Como eles eram criativos! Tempos depois descobri que estava tudo online. Ok! Nesse meio tempo também tive contato com Linux, acesso a distância, Ubuntu, terminais, etc. Um mundo novo foi aberto para mim, e era muito interessante! Voltando do estágio cai na dura realidade: ninguém trabalhava com Python, ninguém usava ubuntu/linux e não tinha como mudar as coisas. Ok, MATLAB então. Uma das coisas que mais me desmotivou foi ter que aprender as coisas sozinha, travando nas minhas dúvidas e, ainda por cima, para aprender algo que as pessoas não viam utilidade (dentro da nossa área). No final da faculdade comecei a trabalhar numa multinacional com engenharia portuária e costeira. MATLAB e Windows na veia. Mas, teimosa que sou, comecei a colocar Python no que eu podia. Apesar de afastada dos estudos contínuos, eu gostava muito da linguagem e queria continuar aprendendo (desde que eu fizesse algo útil). Então eu usei Python para automatizar a produção de mapas num software chamado ArcGIS, depois desenvolvi um software para calcular o tamanho de um navio com base em umas tabelas internacionais, e até me aventurei brevemente pela web com o Django. Um belo dia decidi fazer mestrado e tomei a decisão de que todos os pré e pós processamentos seriam com Python. Também escolhi um modelo numérico que só poderia ser utilizado em ambiente Linux. Então eu me desafiei de verdade. Resolvi sair da preguiça e aprender! Nem que fosse sozinha! (Mas mas não foi!). Um amigo me ajudou muito e assim eu fui aprendendo ainda mais, e gostando cada vez mais. Nesse meio tempo o grupo da Python Floripa se formou. Na primeira reunião pedi pra um amigo ir comigo, porque tinha medo e vergonha de não saber o suficiente. Na última hora ele cancelou comigo! Acabei não desistindo e fui no encontro de qualquer forma. Eu era a única menina naquela primeira reunião e, “para melhorar”, as palestras foram puramente sobre web. Eu não entendi nada, mas achei aquele mundo fantástico. Decidi não ir nos próximos encontros, porque eu assustei com o conteúdo e com o quanto eu não entendi as coisas. Mas aí aconteceu a “mágica” da comunidade Python. Os meninos repararam nesse problema e chamaram uma pessoa para dar uma palestra que fosse mais “a minha cara” (menos web e mais análise de dados). Quando a palestra estava para acontecer, vários deles me mandaram mensagens avisando e falando que eu deveria ir. Fantástico, né? Depois disso me engajei de verdade e comecei a me envolver com a organização do SciPy LA 2016, Python Brasil 12 e principalmente do Pyladies. Além disso, o Anitas [saiba sobre o Anitas aqui] estava se formando e conheci mulheres maravilhosas e engajadas. Enfim, em 6 meses tudo mudou e eu já tinha mudado minha vida completamente. E assim eu fui percebendo que eu gostava daquilo. Muito mesmo. Eu amava programar, Github, Python, Ubuntu, etc. Eu podia gastar horas estudando isso. Conforme eu me envolvia, eu percebi que poderia ser uma segunda opção. No entanto eu fiz o que a maioria de nós faz: pensei que nunca iria conseguir. “Não sou boa o suficiente”, “Jamais conseguiria me envolver totalmente nisso”, etc. Pensei mesmo. Não adianta, nós pensamos, e todos sabemos que sim. Mas mesmo pensando isso, não parei de tentar aprender e de me envolver nas coisas. Não era o objetivo mesmo! Aí um belo dia eu resolvi apresentar para aquele pessoal de web o que uma oceanógrafa estava fazendo indo nos encontros. Afinal, eu programava? Por quê? Então apresentei um pouco dos meus resultados do mestrado, que tipo de dados eu trabalhava e um vídeozinho com uma onda de maré sendo propagada no meu modelo numérico. No mesmo dia, a gerente de projetos de uma empresa havia dito que havia uma vaga aberta para backend em Python. No fim da noite me vi ao lado dela e resolvi saber mais sobre a vaga que ela havia comentado e começamos a conversar. O que disse no final foi: “muito legal, mas infelizmente não posso concorrer para essa vaga”. Ela me questionou o porquê e eu disse que sabia Python, mas o que eles trabalhavam era uma área totalmente diferente. E foi aí eu recebi uma resposta que eu não esperava ouvir: “Não tem problema, o que você faz é tão complexo quanto, vem conversar com a gente com mais calma!” E eu fui. Assim, em 3 semanas a minha vida mudou, eu pedi demissão da minha empresa para virar backend developer, onde estou hoje indo para a minha terceira semana. Enquanto eu avisava as pessoas que estava mudando de área, eu fiquei esperando receber um “você está louca”! Mas não foi isso que eu recebi… Eu recebi muito apoio e incentivo, principalmente das pessoas mais próximas que aguentaram minhas inseguranças durante todo o processo entre a primeira conversa até o meu primeiro dia de trabalho. Não vou mentir. Na noite anterior ao meu primeiro dia eu entrei em pânico. Chorei muito. O que eu estava fazendo? Eu não ia conseguir isso! Era uma loucura! O que eu tive não foi racional, foi puramente emocional e descontrolado. Liguei pra quem eu sabia que ia me acalmar e assim me joguei no dia seguinte, com muito medo e uma vontade enorme de querer dar certo. Então eu gostaria de falar algumas coisas que eu aprendi no processo… A primeira coisa que eu aprendi é que eu não fiz essa mudança sem medo e sem insegurança. Isso não pode deixar a gente parar de fazer as coisas jamais! Recebi vários comentários dizendo que a minha coragem foi inspiradora e que eu era um exemplo. Eu não me considero exemplo de nada! Vocês não imaginam o medo que eu estava! Mas foi aí que eu percebi que os nossos exemplos também têm medo e isso não é problema nenhum. Faça com medo mesmo, mas faça! A segunda coisa é: faça as coisas com paixão. Descubra o que você gosta e faça! Independente se você tem perspectivas, mesmo que você ache que não sabe e que não vai conseguir. O importante é gostar de alguma coisa. E a última é: cerque-se e valorize as pessoas que te apoiam. Eu jamais teria alcançado tanta coisa e tido coragem de mudar a minha vida se eu não contasse com o apoio de inúmeros anjos, desde os primeiros que me desafiaram até os atuais, que me apoiaram e continuam me apoiando. Esse é um lugar onde decidi compartilhar minha história e tentar ajudar meninas que tem vontade de aprender a programar. Entre, fique a vontade e eu espero que você se apaixone tanto quanto eu. Sobre a autora: Letícia Portella é Oceanógrafa, desenvolvedora apaixonada e fissurada por leitura. #leticiaportella #matlab #mulheresnaciência #oceanografa #oceanografia #programação #programadora #python #software #convidados

  • Pesticidas e Aves Marinhas

    Por  Jana del Favero e Fernanda I. Colabuono Ilustração: Joana Ho Pesticidas (ou praguicidas) são substâncias, misturas de substâncias, ou até mesmo agentes biológicos (como um vírus ou uma bactéria), capazes de prevenir, combater ou exterminar espécies que causem danos durante a produção, colheita e armazenamento de alimentos, ou que causem danos à saúde pública (ex. insetos vetores de doenças). São importantes na agricultura pois, ao controlarem pragas, promovem um aumento na produtividade e/ou na qualidade do alimento. Porém, seu uso indiscriminado provoca vários problemas ambientais e para a saúde humana, uma vez que são tóxicos também para as espécies não-alvo, ou seja, para uma infinidade de outras espécies, além de mim, você e as aves marinhas, que focaremos nesse post. Muitas vezes são nomeados de acordo com o tipo de praga que eles atacam, exemplo: inseticidas para o controle de insetos, herbicidas para o controle de ervas daninhas, fungicidas para fungos, entre diversos outros nomes. Já "agrotóxico", que comumente escutamos, é o termo legal e está definido na Lei 7802/89, também chamada Lei de Agrotóxicos. Eles podem ser classificados em agrícolas ou não agrícolas (saiba mais sobre aqui). O transporte de agrotóxicos do solo para os corpos de água ocorre, principalmente, devido ao escoamento superficial gerado pela ação da chuva ou irrigação do cultivo. Uma vez que atingem os rios, estes funcionarão como uma “via expressa” transportando os agrotóxicos até os oceanos. Como muitos pesticidas são compostos com alta estabilidade química, ou seja, dificilmente são degradados ou metabolizados, eles persistem no ambiente por muito tempo. Assim, podem ser transportados por longas distâncias e ocorrer até mesmo em regiões onde nunca foram produzidos ou utilizados, como na Antártica! Uma vez nos oceanos, os pesticidas são absorvidos pelo plâncton (lembre deles aqui) e são transportados, através da alimentação, para níveis tróficos superiores, num processo denominado biomagnificação. Um exemplo de biomagnificação é apresentado na figura abaixo, onde é possível ver como a concentração de um pesticida (o DDT) em ppm (partes por milhão) aumenta a cada nível trófico: zooplâncton [0,04 ppm] < peixes pequenos [0,5 ppm] < peixe grande [2 ppm] < aves [25 ppm]. É importante lembrar que muitos peixes e aves possuem hábitos migratórios, servindo como meio de transporte de pesticidas para outras regiões. Um dos pioneiros e mais famoso pesticida, o DDT (sigla de Dicloro Difenil Tricloretano e formadora do verbo dedetizar), foi amplamente usado durante e após a Segunda Guerra Mundial para o combate de mosquitos causadores de malária e tifo, por ser barato e altamente eficiente a curto prazo. Porém, a longo prazo tem efeitos nocivos ao meio ambiente, como alarmado pelo bióloga norte-americana Rachel Carson em seu livro “Primavera Silenciosa”, que afirmava que DDT causava a diminuição da espessura das cascas de ovos, resultando em problemas reprodutivos e em morte das aves. O livro “Primavera Silenciosa” auxiliou no banimento do DDT nos Estados Unidos na década de 70, seguido por diversos outros países ( foi apenas em 2009 que o banimento ocorreu no Brasil!). Por mais que o DDT tenha sido banido na maioria dos países há décadas e nunca tenha sido usado na Antártica, em seu trabalho de pós-doutorado, a Fernanda analisou ovos de algumas espécies de aves antárticas, como pinguins, petréis e skuas, e constatou a presença de DDTs e de outros pesticidas nos mesmos, ilustrando bem como essas substâncias persistem no ambiente e atingem até mesmo áreas remotas. Mas não pense que a transferência pela cadeia trófica (conforme mostrado na figura de biomagnificação) é a única forma dos pesticidas atingirem as aves. Atualmente nós, seres humanos, incluímos mais um item alimentar no cardápio das aves marinhas: OS PLÁSTICOS! As aves marinhas, acidentalmente, confundem o plástico com algum item alimentar e os ingere, causando diversos danos ao indivíduo (ex. obstrução do trato digestório, diminuição do estímulo alimentar etc). Além disso, os plásticos absorvem os pesticidas (ou seja, as moléculas da substância em questão ficam aderidas/fixadas na superfície do plástico). E Bingo!... Além de todo o dano causado pela ingestão do plástico por si só, as aves ainda estão consumindo plásticos cobertos de pesticidas e outros poluentes! Em um trabalho publicado em 2010, a Fernanda e seus colaboradores avaliaram os objetos plásticos ingeridos por aves amostradas no sul do Brasil, e constataram a ocorrência de pesticidas nos mesmos. Infelizmente, a concentração de pesticidas vem aumentando ano a ano, sendo os mesmos encontrados no solo, na atmosfera, nas águas, e nos seres vivos. O Brasil é um dos maiores consumidores de agrotóxicos do mundo, com o uso indiscriminado de pesticidas em muitos casos. Esse quadro precisa mudar. As aves marinhas e a sua saúde agradecem! Para saber mais: Colabuono, F.I., et al. (2010) Polychlorinated biphenyl and organochlorine pesticides in plastics ingested by seabirds. Marine Pollution Bulletin 60, 630-634. Disponível em: http://www.sciencedirect.com/science/article/pii/S0025326X10000366 Colabuono, F.I., et al. (2015). Organochlorine contaminants and polybrominated diphenyl ethers in eggs and embryos of Antarctic birds. Antarctic Science 27(4), 355–361. doi:10.1017/S0954102014000807 Colabuono, F.I., et al. (2016). Persistent organic pollutants in blood samples of Southern Giant Petrels (Macronectes giganteus) from the South Shetland Islands, Antarctica. Environmental Pollution 216, 38-45. Disponível em: http://www.sciencedirect.com/science/article/pii/S0269749116304298. Dossiê ABRASCO: um alerta sobre os impactos dos agrotóxicos na saúde / Organização de Fernando Ferreira Carneiro, Lia Giraldo da Silva Augusto, Raquel Maria Rigotto, Karen Friedrich e André Campos Búrigo. - Rio de Janeiro: EPSJV; São Paulo: Expressão Popular, 2015. 624 p. Disponível em: http://www.abrasco.org.br/dossieagrotoxicos/wp-content/uploads/2013/10/DossieAbrasco_2015_web.pdf A Fernanda Colabuono já publicou outro post aqui no Bate-Papo, relembre: Pesquisando nas ilhas remotas do Brasil #agrotóxicos #avesmarinhas #ciênciasdomar #pesticidas #plâncton #plástico #janamdelfavero #FernandaIColabuono

  • Pellets e microplástico no ambiente marinho

    Por Gabrielle Souza Você já parou para pensar por que os pequenos pedaços de plástico são prejudiciais à vida no oceano? E como eles vão parar lá? Hoje vamos falar sobre pellets e microplástico no ambiente marinho. Todos os dias os seres humanos geram toneladas de lixo. Boa parte vai para lixões ou aterros sanitários, porém pellets e microplásticos vão parar nos oceanos prejudicando a vida dos organismos marinhos. Mas, existe diferença entre pellets e microplástico? Sim! Os pellets são “mini-bolinhas”, conhecidas também como pastilhas de resina plástica ou nurdles. Possuem aproximadamente 0,1 - 0,5 centímetros de diâmetro e são utilizadas como matéria-prima para a fabricação de novos produtos de plástico, não sendo originárias da divisão de itens maiores em pequenos pedaços. Uma comparação simples seria o trigo que é matéria-prima da farinha, que posteriormente será utilizada para fazer um bolo. Esses pellets são transportados para os locais que as moldam e remontam para criação de novos produtos. Contudo, durante a fabricação e transporte, os pellets podem ser liberados de forma acidental no ambiente, e por meio de escoamento e fluxo de águas, são direcionados para o oceano. Devido à sua durabilidade, os pellets ficam presentes durante anos no oceano, sendo transportados por correntes de água que os distribuem em praias por todo o mundo. Especialistas afirmam que, uma vez na água dos oceanos, este material retém poluentes químicos que encontram-se em seu redor, prejudicando animais, como aves e organismos marinhos, visto que estes farão a ingestão acreditando que a “mini-bolinha” seja alimento, possivelmente absorvendo as toxinas liberadas posteriormente pelo pellet. Pellets de plástico. Fonte A fim de avaliar a poluição marinha, estas pastilhas de resina estão sendo coletadas. O portal online para ao lixo marinho Litterbase realiza o monitoramento dos locais que possuem mais acúmulo e distribuição de lixo nos cursos d’água. O Litterbase conta com um mapa mundial de distribuição dos tipos de lixo em diferentes locais e publicações de artigos sobre o assunto (Link Mapa). Possui também uma página que reúne a proporção de diferentes tipos de lixo que contribuem para a composição global, com dados calculados e distribuídos em gráficos (Link). Existe também a Fidra, uma instituição de caridade localizada em East Lothian na Escócia, que se envolve em questões ambientais, contribuindo para um diálogo amplo a nível nacional e internacional. Eles possuem um mapa, onde realizam a caçada por nurdles (Link Mapa), além de trabalharem em conjunto com a indústria do plástico, a fim de acabar com a poluição por pellets. E o microplástico? Qual a diferença dele para o pellet? Microplástico são partículas cujo tamanho varia de 1 nanômetro a 5 milímetros. Ao contrário dos Pellets o microplástico é resultado de plásticos maiores que se dividiram em pedaços menores. Esta divisão pode ser consequência, por exemplo, de quando o plástico é fragmentado mecanicamente, por ação do vento e ondas do mar. Ou seja, microplástico é uma forma secundária da matéria-prima, as pastilhas de resina. As microesferas são um tipo de microplástico feito de polietileno. É muito utilizada para fabricação de produtos de beleza e saúde, como por exemplo o creme dental e glitter utilizado em maquiagens, que foi bastante usado no carnaval, e que já possuem alternativas biodegradáveis. Devido ao seu tamanho essas partículas acabam ultrapassando facilmente o sistema de água dos ralos chegando aos rios e oceanos. Essas partículas são encontradas no estômago de peixes, baleias e espécies do plâncton. Similarmente aos pellets, os poluentes químicos aderem-se ao microplástico, contaminando os organismos que os ingerem. Pesquisas estão em andamento para saber realmente quais são os impactos que ambos podem causar nos organismos marinhos. Microplástico na praia de Northwestern Hawaiian Islands em 2014. Fonte Microplástico presente em cosmético para esfoliação facial. Fonte Para saber mais: http://litterbase.awi.de/interaction_detail http://litterbase.awi.de/litter_detail http://www.nurdlehunt.org.uk/ http://www.pelletwatch.org/maps/ https://marinedebris.noaa.gov/ Referências: VERGNAULT, Olivier. Nurdles pollution at record levels as 100,000 tiny plastic pellets found on one Cornish beach. 2017. Disponível em: . Acesso em: 29 abr. 2017. Tiny plastic pellets found on 73% of UK beaches: Great Winter Nurdle Hunt finds thousands of pellets used in plastic production washed up on shorelines around country. 2017. The Guardian. Disponível em: . Acesso em: 29 abr. 2017. MATO, Yukie et al. Plastic Resin Pellets as a Transport Medium for Toxic Chemicals in the Marine Environment. Environmental Science & Technology, [s.l.], v. 35, n. 2, p.318-324, jan. 2001. American Chemical Society (ACS). http://dx.doi.org/10.1021/es0010498. HIRAI, Hisashi et al. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Marine Pollution Bulletin, [s.l.], v. 62, n. 8, p.1683-1692, ago. 2011. Elsevier BV. http://dx.doi.org/10.1016/j.marpolbul.2011.06.004. TANIGUCHI, Satie et al. Spatial variability in persistent organic pollutants and polycyclic aromatic hydrocarbons found in beach-stranded pellets along the coast of the state of São Paulo, southeastern Brazil. Marine Pollution Bulletin, [s.l.], v. 106, n. 1-2, p.87-94, maio 2016. Elsevier BV. http://dx.doi.org/10.1016/j.marpolbul.2016.03.024. What are microplastics?: Microplastics are small plastic pieces less than five millimeters long which can be harmful to our ocean and aquatic life.. NOAA- National Oceanic and Atmospheric Administration U.S Department of Commerce. Disponível em: . Acesso em: 29 abr. 2017. Microplastic Marine Debris: What are microplastics?. NOAA- National Oceanic and Atmospheric Administration U.S Department of Commerce. Disponível em: . Acesso em: 29 abr. 2017. #ambientemarinho #descomplicando #gabriellesouza #lixomarinho #microplástico #pellets #poluiçãomarinha #plástico

  • Histórias de Sucesso #1 — Izadora Mattiello

    Por: Equipe de redação do Laboratório de Carreira Publicação original em: Laboratório de Carreira O Laboratório de Carreira é apaixonado por histórias de sucesso. A nossa equipe foi atrás de exemplos de carreiras de pós-graduandos que, mesmo sob muitas dúvidas, desafios e dificuldades, conseguiram encontrar o seu caminho e conquistar uma excelente vida profissional e financeira. Nosso estudo de caso de hoje é sobre uma bióloga do interior de São Paulo chamada Izadora Mattiello. Atualmente, Izadora é sócia-proprietária da Phomenta, uma empresa que está inovando e criando a nova geração da filantropia no Brasil. Izadora se formou em biologia pela Universidade de Campinas (Unicamp) e desde o início da sua graduação foi apaixonada por usar seu jaleco branco, trabalhar em laboratórios de pesquisa e fazer ciência. No segundo ano de faculdade, foi aluna de iniciação científica na área de biologia ambiental com projetos ligados à área de ecologia marinha de crustáceos. Perto da formatura, ela decidiu se aventurar em um intercâmbio no Chile, na Universidad Católica del Norte, para trabalhar em um laboratório de pesquisa com algas e animais marinhos da Patagônia. Quando voltou, encarou a seleção de mestrado e garantiu seu lugar na USP para fazer o mestrado em um projeto interdisciplinar da Petrobras, que propunha um método inovador para detectar algas marinhas vivas, muitas delas tóxicas, que vinham da água de lastro de navios de diversos portos que podiam prejudicar a fauna local e a saúde humana. Ela conta que foi muito desafiador, porque trabalhava com uma equipe de formações diversas como, por exemplo, engenheiros, oceanógrafos, matemáticos, estatísticos e etc. O interessante é que parte do mestrado da Izadora foi realizado dentro de uma incubadora de empresas tecnológicas da USP e assim ela teve a oportunidade de conhecer um pouco do mundo do empreendedorismo. Depois da caminhada acadêmica de sete anos, poderia-se pensar que tinha chegado o momento de Izadora seguir sua carreira acadêmica e fazer doutorado, mas a dúvida e a incerteza ocuparam sua mente. Ela esperava ver sua pesquisa sendo aplicada para o bem do meio ambiente e da sociedade de uma maneira rápida e eficiente, mas percebeu que no lugar onde estava trabalhando existia muita burocracia, falta de eficiência e que sua paciência não aguentaria isso por mais quatro anos. A angústia e a ansiedade tomaram o lugar do prazer de executar um projeto de pesquisa, a sensação de permanecer na zona de conforto incomodava muito e o brilho nos olhos da Izadora foi aos poucos dando lugar à uma visão obscura da sua carreira. Ela decidiu tentar a vida de pesquisadora dentro de empresas na área de Pesquisa e Desenvolvimento (P&D), só que os problemas continuaram a aparecer. Izadora enviou dezenas de currículos para diversas empresas da área de sua especialidade, mas na maioria das vezes sequer foi chamada para ser entrevistada. O simples fato de ter optado por uma carreira acadêmica durante anos e não ter nenhuma experiência profissional a limitava de começar sua carreira profissional. Passaram-se dez meses de tentativas de seleção para vagas de empregos e nada de respostas positivas. Devido a esse momento de angústia e frustração, Izadora foi atrás de autoconhecimento na tentativa de resgatar o prazer no trabalho e decidiu fazer um curso chamado Catálise na Fundação Estudar. Com isso, ela conectou-se com ela mesma e descobriu que ajudar pessoas era o que a deixava realizada, então começou a trabalhar em uma ONG para colocar isso em prática. Esta atividade a aproximou de planejamento estratégico, marketing, recursos humanos e essas áreas começaram a instigar novamente a vontade de aprender coisas novas. Izadora percebeu que o que ela tinha aprendido durante os sete anos na academia como, por exemplo, montar projetos, executar o planejamento, ter um objetivo, um cronograma e etc era algo fundamental que qualquer organização precisava ter. Sobre o Laboratório de Carreira: Laboratório de Carreira é um projeto que está se tornando uma startup. Tem como objetivo conectar o pós-graduado ao mercado de trabalho, realizando o seu sonho de vida e carreira. Saiba mais em: www.laboratoriodecarreira.com.br. Facebook: www.facebook.com/laboratoriodecarreira/. #históriasdesucesso #izadoramattiello #laboratóriodecarreira #mulheresnaciência

bottom of page